
TECHNICAL DOCUMENTATION

TABLE OF CONTENTS

1. Intro .. 3

1.1. Team members .. 3

2. Development Stack ... 4

2.1. Documentation .. 4

2.2. Communication & Management .. 4

2.3. Game Engine .. 5

2.4. Source Control ... 5

2.5. Units & Metrics ... 5

2.6. Art Artifacts Export .. 5

2.7. Software & programming language ... 10

2.8. Player Controls .. 10

3. Programming Guidelines ... 11

3.1. Formatting Rules ... 11

3.2. Naming Conventions ... 12

3.3. Documentation ... 12

3.4. Scene Hierarchy .. 13

3.5. GameObject Setup .. 13

3.6. Design Patterns ... 13

4. Folder Structure ... 14

4.1. General Structure .. 14

4.2. File & Folder Naming Conventions .. 16

5. Target Platform ... 17

6. Target Audience .. 18

7. Target Context .. 19

8. Useful links .. 20

8.1. Miro board ... 20

8.2. HackNPlan .. 20

8.3. Itch ... 20

8.4. Discord ... 20

1. INTRO

Reel It In is a local couch-party 1v3 game featuring a battle between an all-powerful cannon and three

runners armed with nothing but a rope. With no chance of outrunning the cannon’s attacks, the runners

must work together—reeling each other to safety. However, teamwork isn’t the only option—sabotage is

always on the table.

1.1. TEAM MEMBERS
NAME EMAIL MAJOR

Balder Huybreghs balder.huybreghs@student.howest.be GD

Jens Fierens jens.fierens@student.howest.be GGP

Agnese Cais agnese.cais@student.howest.be GGP

Arthur van den Barselaar arthur.van.den.barselaar@student.howest.be GD

Ioana Raileanu ioana.raileanu@student.howest.be GD

Ziqqy Ziqlam ziqqy.ziqlam@student.howest.be GGP

2. DEVELOPMENT STACK

2.1. DOCUMENTATION

We chose Markdown for documentation due to its open standard and text-based format. This makes it

easy for our source control tool to merge files and resolve conflicts seamlessly, allowing multiple

contributors to work on the same file simultaneously. In contrast, the alternative format (.docx) is a

proprietary binary format, requiring us to use Perforce’s file-locking feature—an approach that doesn’t

align with our workflow.

2.2. COMMUNICATION & MANAGEMENT

All links can be found in Useful Links

2.2.1. HacknPlan

HacknPlan is used for task management, providing a structured weekly overview of what needs to be

done, who is responsible for each task, and which tasks are already in progress.

2.2.2. Miro

Miro serves as a collaborative space for brainstorming, sketching, and visualizing ideas. It helps in

explaining concepts and maintaining an organized overview of all tasks.

2.2.3. Itch.io

Itch.io is our platform for game distribution and developer blogs, where we share progress updates and

announcements.

2.2.4. Discord

We use Discord as our primary communication platform. A dedicated server, linked in the Useful Links

section, helps us stay organized with various channels for different topics.

2.3. GAME ENGINE
• Unity 6000.0.38f1 LTS

We’re choosing Unity 6 for our game because it better aligns with our goals: fast development, simple

stylized 2.5D visuals, and minimal reliance on realistic physics.

After prototyping a simple version of our core mechanic (reeling objects/actors) in both Unreal and

Unity, we found that while Unreal provided realistic physics, it was restrictive due to its precise physics

system. In contrast, Unity allowed us to implement the mechanic quickly and customize physics more

freely to fit our theme.

Key reasons for our choice:

• Great for stylized games – Unity makes it easier to achieve a cartoonish look.

• Simpler workflow – Learning and working in Unity is more straightforward.

• Less unnecessary complexity – Unreal comes with many advanced features we don’t need.

• Customizable systems – Unity allows us to write our own physics and gameplay logic more

easily.

• Strong documentation & tutorials – Unity’s resources make problem-solving faster.

Overall, Unity’s flexibility and ease of use make it the best choice for our project.

2.3.1. Render pipeline
• Universal Render Pipeline (URP) is used for its performance benefits and ease of use.

2.4. SOURCE CONTROL
• Perforce (Helix Core, P4V) is used for version control.

• Perforce server: p4.howest.be:1666

• Art Artifacts Export:

o 3D models should be structured properly before committing to Perforce.

• Changelist descriptions should be clear and concise, explaining the changes made in the files.

• For the folder structure refer to the Folder Structure section.

2.5. UNITS & METRICS

Metric system: 1 unit = 1 meter

2.6. ART ARTIFACTS EXPORT
2.6.1. 3D Models

• Exclusively .fbx binary format following the right naming conventions.

https://www.perforce.com/downloads/helix-visual-client-p4v

2.6.2. Static Meshes
• This is an example export template for static meshes (not rigged/animated)

Example Maya export:

Example blender export:

2.6.3. Skinned Meshes
• We will use blender for rigging and animation. The extra export settings will be the following:

2.6.4. Textures
Photoshop export:

• We will export in 3 different sizes (these guidelines might change once we get to prototype some

materials) :

2048x2048 maps for detailed meshes -> characters, predominant environment elements

1024x1024 maps for mid detailed meshes -> side background elements, additional props in game

512x512 for low detailed meshes and VFX -> least relevant background elements, particle materials

• Textures will be saved in Photoshop .png on HIGH (2048x2048) resolution always.

• Transparency UNCHECKED unless the texture is meant for a translucent material.

• The color space should always be sRGB

The resize process should be done in the engine, so it can be easily manipulated if changes are

implemented further down the production.

The compression settings in Unity can vary depending on the texture content. These are the options

provided and their advantages:

Substance painter export:
• We decided against using standard PBR maps as it would be unnecessary for the art direction

we’re going for.

The maps that we’re going to be using are these 3:

• One RGBA map for base color (with baked AO) and eventual Opacity.

o If the texture doesn’t include opacity it can be saved as a full black map.

o This is for easier handling with master materials.

• One RGB normal map.

o The normal mapping used in Unity is OpenGL.

• One GRAYSCALE emissive map.

o This will be exported ONLY if the texture needs an emissive map.

• The same conventions apply for Substance Designer. The texture packing can be handled in

photoshop.

2.7. SOFTWARE & PROGRAMMING LANGUAGE
CATEGORY TOOLS & SOFTWARE

Game Engine Unity 6000.0.38f1 LTS

Programming Language C#

Development Environment VisualStudio 2022, Jetbrains Rider 2024

Modeling Maya, Blender

Rigging & Animation Blender

Materials & Textures Substance Designer, Substance Painter

Concepting & Textures Photoshop

Source Control Perforce

Documentation Markdown

Markdown editor Jetbrains Rider 2024

2.8. PLAYER CONTROLS

3. PROGRAMMING GUIDELINES

Follow Unity’s C# Style Guide for best practices. The most important rules are outlined below:

3.1. FORMATTING RULES
3.1.1. Indentation style

• Use Allman brace style for improved readability.

// GOOD EXAMPLE

void DisplayMouseCursor(bool showMouse)
{
 if (!showMouse)

 {
 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 }
}

// BAD EXAMPLE

void DisplayMouseCursor(bool showMouse){
 if (!showMouse) {
 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 }
}

• Always include braces in nested multiline statements.

// GOOD EXAMPLE

for (int i = 0; i < 10; i++)
{
 for (int j = 0; j < 10; j++)

 {
 ExampleAction();
 }
}

// BAD EXAMPLE

for (int i = 0; i < 10; i++)

 for (int j = 0; j < 10; j++)
 ExampleAction();

https://avangarde-software.com/unity-coding-guidelines-basic-best-practices/

• Setup your editor so you can automatically format your code.

3.2. NAMING CONVENTIONS

More naming conventions and examples can be found on Unity’s C# Style Guide. A small summary is

listed below:

• PascalCase for most names (classes , public properties, public/private functions,

namespaces).

• **_PascalCase** with an “I” prefix for interfaces. Example: IExampleInterface.

• **_camelCase** for private and protected member fields.

• **_camelCase** for private [SerializeField] fields.

• [SerializeField] GameObjects that hold prefabs should follow <name>_prefab.

Example: cannon_prefab.

3.3. DOCUMENTATION

When implementing more complex systems that require an explanation, write clear comments

explaining how the system works and why the system works the way it does.

When writing public properties and/or methods, make sure to write XML documentation for them. Even

when the properties and methods may appear simple, to avoid confusion, write a small description

about what the exact value represents.

Use descriptive names for methods and properties that require as little documentation as possible.

/// <summary>
/// Get the currently hooked object
/// </summary>
/// <returns>The object that is currently hooked, null if nothing is hooked</returns>
public GameObject GetHookedObject()

{
 // The target is set the moment the fishing line is cast,
 // however, this does not mean the target has been hooked yet.
 // So while the line is still casting, the target is still null.
 return _casting ? null : _target;
}

/// <summary>
/// Get the GameObject that is currently set as the target for hooking
/// </summary>
/// <returns>The GameObject that is targeted, can be null if no target has been set</

returns>
public GameObject GetCurrentTarget()

{

https://avangarde-software.com/unity-coding-guidelines-basic-best-practices/

 return _target;
}

3.4. SCENE HIERARCHY
• All static environment props should be grouped under a single GameObject called

Environment. This simplifies setting them as static. And makes sure the scene doesn’t get

cluttered

3.5. GAMEOBJECT SETUP
• Separate rendering and collision components within player objects. This makes it easier to

disable colliders or rendering components individually, reducing clutter in the GameObject

components.

3.6. DESIGN PATTERNS
• State Machine

o The State Machine pattern is encouraged and preferred over multiple nested if-
statements

• Singleton
o Though controversial, the Singleton pattern works well within unity and can be used
o It must be added that this does NOT mean that everything should be a singleton

https://gameprogrammingpatterns.com/state.html
https://gameprogrammingpatterns.com/singleton.html

4. FOLDER STRUCTURE

4.1. GENERAL STRUCTURE
• The first layer of folders is organized by type (e.g., Materials, Scenes, Models, Scripts, UI).

• Assets can be further grouped by feature within each category.

4.1.1. Perforce main folder structure
📁 gamep_group16

 📁 ArtAssets - contains all source art assets used in

 the game (NO exports, only source files)

 📁 Design - contains all design assets and documents

 (art bible, tech doc, game design doc)

 📁 Resources - contains images and other resources

 linked in the .md files

 📁 Dev - contains one unity project: the main

 development folder used in the

 production phase

 📁 Main - contains a stable version of the game -

 receives weekly updates from the Dev

 folder

 📁 Prototype - contains tests and experiments; will be

 used mostly during the prototype phase

4.1.2. Unity project folder structure
📁 Assets

 📁 Scenes

 📁 Levels

 📁 Debug

 📁 Materials

 📁 Textures

 📁 Scenes

 📁 Prefabs

 📁 Models

 📁 Character

 📁 Environment

 📁 Props

 📁 PowerUps

 📁 Misc

 📁 Input

 📁 Scripts

 📁 Interfaces

 📁 UI

 📁 Menu

 📁 HUD

 📁 Settings

 📁 SFX

 📁 RFX

4.1.3. Art assets folder structure
📁 ArtAssets

 📁 Materials

 📁 Textures

 📁 Scenes

 📁 Models

 📁 Character

 📁 Environment

 📁 Props

 📁 PowerUps

 📁 Misc

 📁 ConceptArt

 📁 Character

 📁 Environment

 📁 Props

 📁 PowerUps

 📁 Misc

 📁 UI

 📁 Menu

 📁 HUD

 📁 Settings

 📁 SFX

 📁 RFX

4.2. FILE & FOLDER NAMING CONVENTIONS
• All files and folders within Perforce should be named using PascalCase.

• Avoid spaces, underscores, or lowercase letters.

• Keep the names short.

• Use underscore and postfixes (suffixes) to specify the file’s type.

o Example: Explosion_SFX.wav for sound effects.

o Example: Barrel_Prop.blend for 3D models.

• You don’t need to include the file type in the postfix if it’s already indicated by the file extension.

o Example: don’t use MyAsset_PSD.psd.

4.2.1. List of Postfixes
• **_SFX** for sound effects

• **_RFX** for realtime effects

• **_BGM** for background music

• **_UI** for UI elements (health bar, player icon, buttons, scores, etc.)

• **_Prop** for props (crates, furniture, etc.)

• **_Char** for character models (player, enemies, NPCs)

• **_Env** for non-interactable background environmental models

• **_Tex** for textures

o **_Tex_BaseColorOpacity** for base maps

o **_Tex_Normal** for normal maps

o **_Tex_Emissive** for emissive maps

• **_Mat** for materials

5. TARGET PLATFORM

We chose Windows as the primary platform for Reel It In due to its widespread accessibility and

compatibility with local multiplayer setups. Windows provides: - Broad Hardware Support – Most PCs

can run Reel It In without requiring high-end specs, making it accessible to a large audience. - Strong

Controller Compatibility – Windows supports a wide range of controllers, which is essential for a

couch multiplayer game. - Ease of Development & Distribution – Unity offers excellent Windows

support, and distributing the game via platforms like Itch.io is straightforward. - Local Multiplayer

Focus – As a party game, Reel It In is best suited for PC setups with multiple controllers, allowing

players to easily plug in and play together.

6. TARGET AUDIENCE

Inspired by party games like Mario Party and Smash Bros, Reel It In prioritizes fun, unpredictability, and

replayability, making it ideal for casual and competitive play alike:

• Casual Gamers & Party Game Fans – People who enjoy quick, fun, and accessible multiplayer

experiences

• Local Multiplayer Enthusiasts – Groups of friends or families looking for a competitive yet

lighthearted couch co-op experience.

• Competitive Players – While the game is simple to pick up, it allows for strategic play through

its grappling mechanic, making it appealing to players who enjoy skill-based interactions.

• All Ages & Skill Levels – With simple controls and intuitive mechanics, Reel It In is accessible

to both beginners and experienced players, ensuring everyone can jump in and have fun

regardless of gaming experience.

7. TARGET CONTEXT

Reel It In is designed as a fast-paced, chaotic 1v3 couch multiplayer game that thrives on quick,

dynamic interactions. With a focus on simple controls and short play sessions, the game is easy to pick

up but allows for creative and strategic play.

The reeling mechanic serves as the core gameplay element, enabling both cooperative and competitive

interactions between players. The balance between helping or sabotaging teammates adds depth while

keeping the experience accessible and fun.

The game does not aim for realistic physics but instead embraces a cartoonish and exaggerated

movement style, using a Bezier curve-based grappling system for smooth and readable reeling

mechanics. The game is built with local multiplayer in mind, ensuring responsive controls and clear

visual feedback for an engaging couch co-op experience.

8. USEFUL LINKS

8.1. MIRO BOARD
8.2. HACKNPLAN
8.3. ITCH
8.4. DISCORD

https://miro.com/app/board/uXjVLgp23-A=/
https://app.hacknplan.com/p/217307
https://gelearthur.itch.io/group16awsomegame
https://discord.gg/ApUdsMpxaP

