Technical Doc

® Created by & Judds Art
© Created time @September 19,
® Last edited by & Judds Art

@ Last updated time @September 19,

Rooftop Garden

Author Date Version
Timi Moilanen 3.9.2025 0.0.1
Timi Moilanen 10.9.2025 0.0.2
TIoana Raileanu 10.09.2025 0.1.0
Ioana Raileanu 11.09.2025 1.0.0

Table of contents

Technical Doc

2025 12:21 AM

2025 9:53 PM

Comments

Document created
Document updated
Updated document

Finished first draft

Game / Software overview

Rooftop Garden is a first-person single player game about
farming in a rooftop garden. You are trapped in a compact
room, with nothing but your garden to keep you company. Your
only friend is the carnivorous plant that mysteriously lives
on your rooftop.

You have to grow your own produce to keep yourself alive, as
well as avoid the carnivorous plant’s wrath.

Core features

The main mechanic of the game is farming, and it consists of
the following sub-mechanics:

« Ploughing the soil

« Planting the seeds

« Watering the plants

« Removing bugs and weeds from the plants (if necessary)
« Collecting your produce

The farming mechanic is supported by the day-night cycle
feature, as well as by the carnivorous plant, which plays an
important role in the farming process: it will sometimes give
you random seeds to expand your garden.

Another mechanic branching from the farming is the hunger
meter: yours, and the carnivorous plant’s. You have to grow
enough food to maintain both of you.

Technical goals

. Reliability

Technical Doc

o The game should not have any existing crashes/errors by
delivery date

o Error handling is consistently done from the start
« Maintainability

o It should be really easy to build on top of the current
framework

o Component/Interfaces are preferred over casting
« Scalability

o It’s easy to add new features on top of the pre-existing
systems

- Data-driven design

o The artists/designers can easily configure new game
content through simple blueprint/data table changes,
without having to mess with the code

Platforms and system requirements
Platforms: Windows 10/11 (64-bit)
System requirements:
« Minimum:
o 0S: Windows 10 64-bit

o Processor: Dual-core CPU (Intel i3-8100 / AMD Ryzen 3
1200 or equivalent)

o Memory: 8 GB RAM
o Graphics: NVIDIA GTX 1050 Ti / AMD RX 560 (4 GB VRAM)
o Storage: ~5-10 GB available
o DirectX: Version 12
- Recommended:
« 0S: Windows 11 64-bit

« Processor: Quad-core CPU (Intel i5-9600K / AMD Ryzen 5 3600
or equivalent)

Technical Doc

Memory: 16 GB RAM
« Graphics: NVIDIA GTX 1660 Super / AMD RX 6600 (6 GB+ VRAM)
« Storage: SSD with ~10 GB free space

DirectX: Version 12

Tools and third-party libraries

o Operating System: Windows 10/11

« Game Engine: Unreal Engine 5.4.4

« Programming language: C++ & Blueprints

« Source Control: GitLab (hosted by Kamk/Kamit)

« Modeling, Rigging, Animation: Blender 4.4.1, Maya

o Blender addon: Super Batch Export

« Development Environment: Visual Studio 2022, JetBrains
Rider

« Textures: Substance Painter, Photoshop, Blender 4.4.1

Coding standards

For a more comprehensive list of the coding standards used in
this project, please check Unreal’s Coding_Standard. The more
important coding standards are listed below.

« Raw pointers should almost never be used! Unreal’s type
TObjectPtr is preferred (e.g. TObjectPtr<FStaticMesh>)

o« All public variables need to be marked as UPROPERTY!
Otherwise the garbage collector will create issues.

« Globals should NOT be used! Use the game instance or
UworldSubsystem for something similar.

« It’s not always necessary to check if a variable is valid!
If the variable is supposed to always be valid, printing an
error message when it’s not is expected instead of just
performing when the variable is valid.

Technical Doc

https://github.com/mrtripie/Blender-Super-Batch-Export
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine

« Functions that return a boolean should ask a question (e.g.
IsCollectable)

« Comments over non-explainatory public functions should
always be included, further explaining the function’s
utility (and parameters)

3.1. Naming Convention

Generally, the base naming convention C++ for Unreal Engine 1is
PascalCase. There shouldn’t be any underlines in the names.
Unreal’s types have an additional upper-letter prefix (e.g.
FObject):

- Template classes are prefixed by T

« Classes that inherit from UObject are prefixed by U

« Classes that inherit from AActor are prefixed by A

« Classes that inherit from SwWidget are prefixed by S

« Classes that are abstract interfaces are prefixed by I
« Enums are prefixed by E

« Boolean variables must be prefixed by b

Most other classes are prefixed by F

For asset naming conventions refer to the Unreal Directive.

For asset naming convention inside the ArtAsset folder use the
following main rules:

« Texture prefix is T_ , followed by the mesh name and the
map type as a suffix "T_[AssetName]_[MapType]” . Use the
following as suffixes:

o _BaseColor

o

_Normal

_Opacity

[e]

o

_Roughness

o _AO

o

_Metallic

Technical Doc

https://unrealdirective.com/resources/asset-naming-conventions

« SM_MeshName for static meshes
« SKM_MeshName for skeletal (rigged) meshes

« AS _AnimationName for animations

Folder structure

Gitlab base folder structure
ArtAssets
Source - contains all source art assets used in the game

Exports - contains all the exported assets (e.g. .fbx) in
the game. Updating an exported asset is done by rewriting
the original file, so it can be easily reimported in
Unreal’s editor by RMB->Reimport

Dev - contains one Unreal project: the main development
folder used in the production phase

Main - contains a stable version of the game - receives
regular updates from the Dev folder

Prototype - contains tests and experiments; will be used
mostly during the prototype phase

Unreal project folder structure

each folder can be further sub-divided into
categories

Animations
AnimBlueprints
AnimMontages
AnimNotifies
AnimSequences
BlendSpaces

Audio
SoundCues

SoundwWaves

Technical Doc

Blueprints
Pawns
Actors
Components
DataTypes
Game -> for GameInstance, GameMode, HUD, etc.
Particles
Widgets
Misc
Fonts
Input
Actions
Maps
Debug
Materials
MaterialInstances
Meshes
PhysicsAssets
SkeletalMeshes
Skeleton
StaticMeshes

Textures

Art assets folder structure

The art folder should mainly resemble the Unreal project’s
structure, with the addition of being further subdivided into
categories.

Concept art
Prototype

Meshes

Technical Doc

Plants

PlantName - includes all growth stages
Environment
Animals
Tools

Textures

Plants

PlantName
Environment
Animals
Tools

UI

SW Architecture

Player Interactables

Movement ()
| Plant plot
Input . |

Interaction Camivorous piant

— foeeeesceaod plougn siot
First person camera Can become aggressive Actions B g
L Feed
-4 Piantseed
){ Inventory System —_—
— T Collect seeds |

Harvest Produce

»{ Inventory System

The one system that connects to all interactables is the
inventory system, since it involves either using something in
your inventory, or collecting something in your inventory.

Input is received in the Player Controller class, which sends
an event towards the player that performs the required action
(movement, interaction).

All interactable objects use the Interactable interface.

Technical Doc

Class diagrams

Inventory system component

= InventorySystemComp

+ InventorySize: int

Slot struct + ActiveSlot: int

ltemID: Name + Content: TAmay<FSlotStruct>
Quantity: int
+ AddTolnventory(Name): bool

+ RemoveFrominventory(int, int): bool
+ SetActiveSlot(int). void

+ GetSlotinfo(int): bool, FSlotStruct

Item struct
Item data table

Name: Text

Description: text Name: ltemiD
Thumbnail: Texture2D Retumns: FltemStruct
ltemClass: ActorRef

ltemMesh: StaticMesh

The inventory system component is contained in the Player
class, and is referenced by most, if not all, of the
interactables.

The pick-up objects each has an item ID which they can be
identified by, and found in the Item Data Table.

Technical Doc

Farming Plot

B PlantGrowthComp

+ Plantinfo: FPlantinfo

= FarmingPlot + CurrentGrowthStage: int

<<Interface>> + BPC_PlantGrowth

+ GetCurmrentMesh(): StaticMesh
Interactable

+ Plant: Static Mesh + Collect(): bool, Name

+ Interact(): void

- HasPlant: bool + UpdatePlantinfo(FPlantinfo): void

+ Interact(): void + Reselt(): void

- UpdatePlantMesh(): void

Event: OnMeshUpdated
Plant info struct

Plant info data tabl
GrowingStageNr: int A =

StageMeshes: TArray<StaticMesh> Name: ltemlD_seed

ProducelD: Name Retumns: FPlantinfo
TimePerStage: float

The farming plot is an essential actor for the farming
mechanic. It manages plant growth, planting seeds, collecting
produce, and will soon also include ploughing the soil,
weeding and collecting the bugs.

Application flowchart

Technical Doc

Technical Doc

Plant Seeds Yes-

Has empty plot?.

Do the plans need
tending to?

Tend to plants

«—Yes

Main menu

6et 1o the rooftop

Find Seeds

Get tools

Has seeds?

Collect produce

Lose game

n

