
Technical Doc

Created by Judds Art

Created time

Last edited by Judds Art

Last updated time

Rooftop Garden
Author Date Version Comments

Timi Moilanen 3.9.2025 0.0.1 Document created

Timi Moilanen 10.9.2025 0.0.2 Document updated

Ioana Raileanu 10.09.2025 0.1.0 Updated document

Ioana Raileanu 11.09.2025 1.0.0 Finished first draft

Table of contents

@September 19, 2025 12:21 AM

@September 19, 2025 9:53 PM

Rooftop Garden

Table of contents

Game / Software overview

Core features

Technical goals

Platforms and system requirements

Tools and third-party libraries

Coding standards

Folder structure

Gitlab base folder structure

Unreal project folder structure

each folder can be further sub-divided into categories

Art assets folder structure

SW Architecture

Technical Doc 1



Game / Software overview
Rooftop Garden is a first-person single player game about 

farming in a rooftop garden. You are trapped in a compact 

room, with nothing but your garden to keep you company. Your 

only friend is the carnivorous plant that mysteriously lives 

on your rooftop.

You have to grow your own produce to keep yourself alive, as 

well as avoid the carnivorous plant’s wrath.

Core features
The main mechanic of the game is farming, and it consists of 

the following sub-mechanics:

Ploughing the soil

Planting the seeds

Watering the plants

Removing bugs and weeds from the plants (if necessary)

Collecting your produce

The farming mechanic is supported by the day-night cycle 

feature, as well as by the carnivorous plant, which plays an 

important role in the farming process: it will sometimes give 

you random seeds to expand your garden.

Another mechanic branching from the farming is the hunger 

meter: yours, and the carnivorous plant’s. You have to grow 

enough food to maintain both of you.

Technical goals

Reliability

Class diagrams

Inventory system component

Farming Plot

Application flowchart

Technical Doc 2



The game should not have any existing crashes/errors by 

delivery date

Error handling is consistently done from the start

Maintainability

It should be really easy to build on top of the current 

framework

Component/Interfaces are preferred over casting

Scalability

It’s easy to add new features on top of the pre-existing 

systems

Data-driven design

The artists/designers can easily configure new game 

content through simple blueprint/data table changes, 

without having to mess with the code

Platforms and system requirements
Platforms: Windows 10/11 (64-bit)

System requirements:

Minimum:

OS: Windows 10 64-bit

Processor: Dual-core CPU (Intel i3-8100 / AMD Ryzen 3 

1200 or equivalent)

Memory: 8 GB RAM

Graphics: NVIDIA GTX 1050 Ti / AMD RX 560 (4 GB VRAM)

Storage: ~5–10 GB available

DirectX: Version 12

Recommended:

OS: Windows 11 64-bit

Processor: Quad-core CPU (Intel i5-9600K / AMD Ryzen 5 3600 

or equivalent)

Technical Doc 3



Memory: 16 GB RAM

Graphics: NVIDIA GTX 1660 Super / AMD RX 6600 (6 GB+ VRAM)

Storage: SSD with ~10 GB free space

DirectX: Version 12

Tools and third-party libraries
Operating System: Windows 10/11

Game Engine: Unreal Engine 5.4.4

Programming language: C++ & Blueprints

Source Control: GitLab (hosted by Kamk/Kamit)

Modeling, Rigging, Animation: Blender 4.4.1, Maya

Blender addon: Super Batch Export

Development Environment: Visual Studio 2022, JetBrains 

Rider

Textures: Substance Painter, Photoshop, Blender 4.4.1

Coding standards
For a more comprehensive list of the coding standards used in 

this project, please check Unreal’s Coding Standard. The more 

important coding standards are listed below.

Raw pointers should almost never be used! Unreal’s type 

TObjectPtr is preferred (e.g. TObjectPtr<FStaticMesh>)

All public variables need to be marked as UPROPERTY! 

Otherwise the garbage collector will create issues.

Globals should NOT be used! Use the game instance or 

UworldSubsystem for something similar.

It’s not always necessary to check if a variable is valid! 

If the variable is supposed to always be valid, printing an 

error message when it’s not is expected instead of just 

performing when the variable is valid.

Technical Doc 4

https://github.com/mrtripie/Blender-Super-Batch-Export
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine


Functions that return a boolean should ask a question (e.g. 

IsCollectable)

Comments over non-explainatory public functions should 

always be included, further explaining the function’s 

utility (and parameters)

3.1. Naming Convention

Generally, the base naming convention C++ for Unreal Engine is 

PascalCase. There shouldn’t be any underlines in the names. 

Unreal’s types have an additional upper-letter prefix (e.g. 

FObject):

Template classes are prefixed by T

Classes that inherit from UObject are prefixed by U

Classes that inherit from AActor are prefixed by A

Classes that inherit from SWidget are prefixed by S

Classes that are abstract interfaces are prefixed by I

Enums are prefixed by E

Boolean variables must be prefixed by b

Most other classes are prefixed by F

For asset naming conventions refer to the Unreal Directive.

For asset naming convention inside the ArtAsset folder use the 

following main rules:

Texture prefix is T_ , followed by the mesh name and the 

map type as a suffix ”T_[AssetName]_[MapType]”. Use the 

following as suffixes:

_BaseColor

_Normal

_Opacity

_Roughness

_AO

_Metallic

Technical Doc 5

https://unrealdirective.com/resources/asset-naming-conventions


SM_MeshName for static meshes

SKM_MeshName for skeletal (rigged) meshes

AS_AnimationName for animations

Folder structure

Gitlab base folder structure

📁 ArtAssets

📁Source - contains all source art assets used in the game

📁Exports - contains all the exported assets (e.g. .fbx) in 

the game. Updating an exported asset is done by rewriting 

the original file, so it can be easily reimported in 

Unreal’s editor by RMB->Reimport

📁 Dev - contains one Unreal project: the main development 

folder used in the production phase

📁 Main - contains a stable version of the game - receives 

regular updates from the Dev folder

📁 Prototype - contains tests and experiments; will be used 

mostly during the prototype phase

Unreal project folder structure

each folder can be further sub-divided into 
categories

📁Animations

📁AnimBlueprints

📁AnimMontages

📁AnimNotifies

📁AnimSequences

📁BlendSpaces

📁Audio

📁SoundCues

📁SoundWaves

Technical Doc 6



📁Blueprints

📁Pawns

📁Actors

📁Components

📁DataTypes

📁Game -> for GameInstance, GameMode, HUD, etc.

📁Particles

📁Widgets

📁Misc

📁Fonts

📁Input

📁Actions

📁Maps

📁Debug

📁Materials

📁MaterialInstances

📁Meshes

📁PhysicsAssets

📁SkeletalMeshes

📁Skeleton

📁StaticMeshes

📁Textures

Art assets folder structure

The art folder should mainly resemble the Unreal project’s 

structure, with the addition of being further subdivided into 

categories.

📁Concept art

📁Prototype

📁Meshes

Technical Doc 7



📁Plants

📁PlantName – includes all growth stages

📁Environment

📁Animals

📁Tools

📁Textures

📁Plants

📁PlantName

📁Environment

📁Animals

📁Tools

📁UI

SW Architecture

The one system that connects to all interactables is the 

inventory system, since it involves either using something in 

your inventory, or collecting something in your inventory.

Input is received in the Player Controller class, which sends 

an event towards the player that performs the required action 

(movement, interaction).

All interactable objects use the Interactable interface.

Technical Doc 8



Class diagrams

Inventory system component

The inventory system component is contained in the Player 

class, and is referenced by most, if not all, of the 

interactables.

The pick-up objects each has an item ID which they can be 

identified by, and found in the Item Data Table.

Technical Doc 9



Farming Plot

The farming plot is an essential actor for the farming 

mechanic. It manages plant growth, planting seeds, collecting 

produce, and will soon also include ploughing the soil, 

weeding and collecting the bugs.

Application flowchart

Technical Doc 10



Technical Doc 11


